Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.867
1.
Sci Total Environ ; 932: 173067, 2024 May 07.
Article En | MEDLINE | ID: mdl-38723964

Optimizing N application under straw-covered strip tillage is of great significance to the rational utilization of stover resources as well as ensure food and ecosystem security, and especially N2O emissions from agricultural systems. Quantifying N2O emissions and even the carbon footprint (CF) from agricultural systems is crucial for future protecting agricultural production systems. A two-year field experiment was conducted on black soil in Northeast China, which set up two tillage systems: strip tillage with straw returning (ST) and conventional tillage (control: CT) without straw and three nitrogen rates: 0, farmers' practice (Nfp 240 kg hm-2), and optimized nitrogen fertilizer (Nopt 180 kg hm-2). We examined the characteristics of N2O emissions and CF under the ST and CT systems. Among them, we indirectly calculated GHG emissions using the LCA method. Compared with CT, the ST system significantly reduces indirect GHG emissions, but did significantly increase direct cumulative N2O emissions by 20.7 %, most likely because the higher soil residual nitrate nitrogen content, WFPS, and soil temperature under ST was 13.0 %, 2 % and 5.7 % higher than that under CT. Nopt treatment markedly reduced cumulative N2O emissions by 36.0 %, CFarea, CFyield, and CFNPV by 22.4 %, 23.1 %, and 23.5 % in ST, respectively, compared to Nfp. The reduction in energy use of machinery in ST results in lower fuel consumption and thus generating less CF. What's more, the decrease of CFyield and CFNPV between nitrogen application treatments under ST was 5.2 % and 7.7 % higher than CT, respectively. ST system can effectively achieve higher grain yield and mitigate GHG emissions on black soil in Northeast China compared with CT, but attention should be paid to N2O emissions in the soil during the maize growth period. The sustainability of balancing GHG emissions, and economic and environmental benefits can be achieved by optimizing nitrogen fertilizer manage.

2.
Int Immunopharmacol ; 134: 112144, 2024 May 10.
Article En | MEDLINE | ID: mdl-38733820

Radiofrequency ablation (RFA), an effective local treatment method for early-stage Hepatocellular Carcinoma (HCC), combined with PD-1 blocking and anti-angiogenic therapy is being extensively explored in advanced HCC, however, the definite results and underlying mechanisms still remain to be elucidated. Therefore, whether non-ablative RFA-based combined therapy can play a synergistic anti-tumor effect through improving tumor immune microenvironment was investigated by us in HCC mouse models. Our results showed that non-ablative RFA could regulate multilayered immunity, such as inducing immunogenic death of tumor cells, upregulating the secretion of inflammatory cytokines, mainly IFN-γ, TNF-α, and IL-10, and subsequently promoting the infiltration of CD8 + T cells. As a result, a significant synergistic anti-tumor effect was demonstrated in the combination therapy group. Similarly, in the real-world setting, non-curative RFA combined with PD-1 blocking and Lenvatinib for 12 patients with Barcelona Clinic Liver Cancer (BCLC) stage C achieve promising results, with 6.9 months (95 % CI: 3.23-15.73) median progression-free survival (mPFS) and 12.7 months (95 % CI: 7.40-19.73) median overall survival (mOS). The common treatment-related adverse reactions were pneumonia and thyroiditis with low prevalence, both less than grade 3 and manageable by symptomatic treatment. Summarily, local non-ablative RFA should be a clinically preferred strategy in combination with PD-1 blocking and anti-angiogenic therapy, because this more flexible scheme abandons its historical concept of tumor eradication, but fully utilizes the immune regulatory function by inducing immunogenic tumor death and has higher-level of safety. Therefore, this is a two-pronged and highly balanced approach to achieved favorable treatment outcomes, while conclusive evidence is still pending, it can be attempted in the real world anyway.

3.
Clin Lab ; 70(5)2024 May 01.
Article En | MEDLINE | ID: mdl-38747915

BACKGROUND: As a tumor mass, a myeloid sarcoma consists of myeloid blasts and presents at an anatomical site other than the bone marrow. In about one quarter of cases, myeloid sarcoma happens without an underlying acute myeloid leukemia or other myeloid neoplasm, and it may precede or coincide with AML or form acute blastic transformation of MDSs, MPNs, or MDS/MPNs. METHODS: Herein, we described a rare case of acute myeloid leukemia with myelodysplasia-related changes (AML-MRC), with WT1 mutation and high expression of TP53 after isolated myeloid sarcoma of lymph nodes showing a higher proportion of blasts, dysplasia of both megakaryocytes and granulocytes. CONCLUSIONS: The case highlights the importance of a bone marrow examination, including morphology, immunophenotyping, cytogenetic, and molecular examination in all cases to exclude the possibility of myeloid sarcoma, especially the morphological feature of bone marrow dysplasia in the early stage before AML.


Leukemia, Myeloid, Acute , Mutation , Myelodysplastic Syndromes , Sarcoma, Myeloid , Humans , Sarcoma, Myeloid/genetics , Sarcoma, Myeloid/diagnosis , Sarcoma, Myeloid/pathology , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/diagnosis , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/pathology , Myelodysplastic Syndromes/diagnosis , Tumor Suppressor Protein p53/genetics , WT1 Proteins/genetics , Male , Bone Marrow/pathology , Middle Aged , Immunophenotyping
4.
Redox Biol ; 73: 103182, 2024 May 08.
Article En | MEDLINE | ID: mdl-38744192

Ferroptosis is an iron-dependent programmed cell death (PCD) enforced by lipid peroxidation accumulation. Transferrin receptor (TFRC), one of the signature proteins of ferroptosis, is abundantly expressed in hepatocellular carcinoma (HCC). However, post-translational modification (PTM) of TFRC and the underlying mechanisms for ferroptosis regulation remain less understood. In this study, we found that TFRC undergoes O-GlcNAcylation, influencing Erastin-induced ferroptosis sensitivity in hepatocytes. Further mechanistic studies found that Erastin can trigger de-O-GlcNAcylation of TFRC at serine 687 (Ser687), which diminishes the binding of ubiquitin E3 ligase membrane-associated RING-CH8 (MARCH8) and decreases polyubiquitination on lysine 665 (Lys665), thereby enhancing TFRC stability that favors labile iron accumulation. Therefore, our findings report O-GlcNAcylation on an important regulatory protein of ferroptosis and reveal an intriguing mechanism by which HCC ferroptosis is controlled by an iron metabolism pathway.

5.
Article En | MEDLINE | ID: mdl-38709407

Peatlands records can be used to reconstruct and understand the history of environmental evolution, as well as a more accurate reflection of human activities. The black carbon (BC) and polycyclic aromatic hydrocarbons (PAHs) are ideal natural archives of anthropogenic activities. To identify the information of anthropogenic activities recorded by peatlands in the middle and high latitudes of the alpine mountains in the arid and semi-arid regions of China. this study analyzed the concentrations of BC, δ13C ratios of BC, PAHs, and molecular diagnostic ratios of PHAs (including Benzo(a) anthracene (BaA), Chrysene (Chr), fluoranthene (Flt), anthracene (Ant), phenanthrene (Phe), Benzo(a) pyrene (BaP), and pyrene (Pyr) in a 30-cm peat profile from the Altay Mountain, northwestern China. Our results revealed concentrations of BC from 11.71 to 67.5 mg·g-1, and PAHs from 168.09 to 263.53 ng·g-1. The δ13CBC value ranged from - 31.37 to - 26.27‰, with an average of - 29.54‰, indicating that the BC mainly comes from biomass combustion. The ratios of BaA/(BaA + Chr), Flt/(Flt + Pyr), and Ant/(Ant + Phe) exceeded 0.35, 0.5, and 0.1, respectively, revealing that the PAHs pollutants mainly originated from the combustion of biomass and fossil fuel burning. Furthermore, based on these findings and our knowledge of social development in Altay, industrial transport and tourism have influenced the emission, transport, and deposition of BC and PAH in peatlands in the Altay mountains since the 1980s. After 1980, pollutant concentrations decreased with the implementation of environmental policies. The results not only reveal the influence of anthropogenic activities on the sedimentary characteristics of peatlands in the Altay Mountains, but also provide an important theoretical basis for the conservation of fragile mountain peatlands.

6.
Mol Ther ; 2024 May 06.
Article En | MEDLINE | ID: mdl-38715363

Human Papillomavirus (HPV) 16 and 18 infections are related to many human cancers. Despite several preventative vaccines for high-risk (hr) HPVs, there is still an urgent need to develop therapeutic HPV vaccines for targeting pre-existing hrHPV infections and lesions. In this study, we developed a lipid nanoparticle (LNP)-formulated mRNA-based HPV therapeutic vaccine (mHTV)-03E2, simultaneously targeting the E2/E6/E7 of both HPV16 and HPV18. mHTV-03E2 dramatically induced antigen-specific cellular immune responses, leading to significant CD8+ T cell infiltration and cytotoxicity in TC-1 tumors derived from primary lung epithelial cells of C57BL/6 mice expressing HPV E6/E7 antigens, mediated significant tumor regression, and prolonged animal survival, in a dose-dependent manner. We further demonstrated significant T cell immunity against HPV16/18 E6/E7 antigens for up to 4 months post-vaccination in immunological and distant tumor rechallenging experiments, suggesting robust memory T cell immunity against relapse. Finally, mHTV-03E2 synergized with immune checkpoint blockade to inhibit tumor growth and extend animal survival, indicating the potential in combination therapy. We conclude that mHTV-03E2 is an excellent candidate therapeutic mRNA vaccine for treating malignancies caused by HPV16 or HPV18 infections.

7.
J Hazard Mater ; 472: 134468, 2024 May 03.
Article En | MEDLINE | ID: mdl-38703680

The performance of biochar (BC) in reducing the transport of antibiotics under field conditions has not been sufficiently explored. In repacked sloping boxes of a calcareous soil, the effects of different BC treatments on the discharge of three relatively weakly sorbing antibiotics (sulfadiazine, sulfamethazine, and florfenicol) via runoff and drainage were monitored for three natural rain events. Surface application of 1 % BC (1 %BC-SA) led to the most effective reduction in runoff discharge of the two sulfonamide antibiotics, which can be partly ascribed to the enhanced water infiltration. The construction of 5 % BC amended permeable reactive wall (5 %BC-PRW) at the lower end of soil box was more effective than the 1 %BC-SA treatment in reducing the leaching of the most weakly sorbing antibiotic (florfenicol), which can be mainly ascribed to the much higher plant available and drainable water contents in the 5 %BC-PRW soil than in the unamended soil. The results of this study highlight the importance of BC's ability to regulate flow pattern by modifying soil hydraulic properties, which can make a significant contribution to the achieved reduction in the transport of antibiotics offsite or to groundwater.

8.
Am J Otolaryngol ; 45(4): 104264, 2024 Mar 20.
Article En | MEDLINE | ID: mdl-38696893

OBJECTIVE: Sleep Disordered Breathing (SDB) is both prevalent and under-recognized in pediatric minority populations. Recognition of SDB is often triggered by symptoms of caregiver-reported snoring. However, the validity and utility of caregiver reports likely vary across populations. Our objective is to assess the association between caregiver-reported snoring and objectively recorded snoring in a low-income urban community and explore factors associated with agreement between objective and subjective snoring. METHODS: 169 6 to 12 year old participants underwent at-home sleep studies with a WatchPAT device as part of the Environmental Assessment of Sleep in Youth (EASY) cohort study. Differences in subjective snoring, objective snoring, and concordance between subjective and objective snoring based on socioeconomic and clinical characteristics were assessed. RESULTS: The sample had a high proportion of non-white (78.9 %) and low income (39.6 %) children. Caregivers reported snoring for 20.7 % of the children and snoring was measured objectively for 21.9 %. Of those with objective snoring, only 29.7 % were identified as snorers by caregiver report (sensitivity: 0.30; specificity: 0.82). Primary Spanish language and co-sleeping were associated with increased caregiver reported snoring, and allergy was associated with increased objective snoring. Older child age and normal range BMI percentile were associated with higher concordance between caregiver and objective snoring. CONCLUSIONS: Among a community-based, predominantly minority sample, caregiver-reported snoring resulted in under-estimation of prevalence of objectively assessed snoring. Reliance on caregiver report may poorly identify children with snoring or SDB in clinical practice.

9.
Foods ; 13(9)2024 Apr 28.
Article En | MEDLINE | ID: mdl-38731728

The rapid growth of the global population has led to an unprecedented demand for dietary protein. Canola seeds, being a widely utilized oil resource, generate substantial meal by-products following oil extraction. Fortunately, canola meals are rich in protein. In this present review, foremost attention is directed towards summarizing the characteristics of canola seed and canola seed protein. Afterwards, points of discussion related to pretreatment include an introduction to pulsed electric field treatment (PEF), microwave treatment (MC), and ultrasound treatment (UL). Then, the extraction method is illustrated, including alkaline extraction, isoelectric precipitation, acid precipitation, micellization (salt extraction), and dry fractionation and tribo-electrostatic separation. Finally, the structural complexity, physicochemical properties, and functional capabilities of rapeseed seeds, as well as the profound impact of various applications of rapeseed proteins, are elaborated. Through a narrative review of recent research findings, this paper aims to enhance a comprehensive understanding of the potential of canola seed protein as a valuable nutritional supplement, highlighting the pivotal role played by various extraction methods. Additionally, it sheds light on the broad spectrum of applications where canola protein demonstrates its versatility and indispensability as a resource.

10.
Oncogene ; 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38664501

Receptor-interacting protein kinase 4 (RIPK4) is increasingly recognized as a pivotal player in ovarian cancer, promoting tumorigenesis and disease progression. Despite its significance, the posttranslational modifications dictating RIPK4 stability in ovarian cancer remain largely uncharted. In this study, we first established that RIPK4 levels are markedly higher in metastatic than in primary ovarian cancer tissues through single-cell sequencing. Subsequently, we identified UCHL3 as a key deubiquitinase that regulates RIPK4. We elucidate the mechanism that UCHL3 interacts with and deubiquitinates RIPK4 at the K469 site, removing the K48-linked ubiquitin chain and thus enhancing RIPK4 stabilization. Intriguingly, inhibition of UCHL3 activity using TCID leads to increased RIPK4 ubiquitination and degradation. Furthermore, we discovered that GSK3ß-mediated phosphorylation of RIPK4 at Ser420 enhances its interaction with UCHL3, facilitating further deubiquitination and stabilization. Functionally, RIPK4 was found to drive the proliferation and metastasis of ovarian cancer in a UCHL3-dependent manner both in vitro and in vivo. Importantly, positive correlations between RIPK4 and UCHL3 protein expression levels were observed, with both serving as indicators of poor prognosis in ovarian cancer patients. Overall, this study uncovers a novel pathway wherein GSK3ß-induced phosphorylation of RIPK4 strengthens its interaction with UCHL3, leading to increased deubiquitination and stabilization of RIPK4, thereby promoting ovarian cancer metastasis. These findings offer new insights into the molecular underpinnings of ovarian cancer and highlight potential therapeutic targets for enhancing antitumor efficacy.

11.
J Nanobiotechnology ; 22(1): 196, 2024 Apr 21.
Article En | MEDLINE | ID: mdl-38644492

Tumors desmoplastic microenvironments are characterized by abundant stromal cells and extracellular matrix (ECM) deposition. Cancer-associated fibroblasts (CAFs), as the most abundant of all stromal cells, play significant role in mediating microenvironments, which not only remodel ECM to establish unique pathological barriers to hinder drug delivery in desmoplastic tumors, but also talk with immune cells and cancer cells to promote immunosuppression and cancer stem cells-mediated drug resistance. Thus, CAFs mediated desmoplastic microenvironments will be emerging as promising strategy to treat desmoplastic tumors. However, due to the complexity of microenvironments and the heterogeneity of CAFs in such tumors, an effective deliver system should be fully considered when designing the strategy of targeting CAFs mediated microenvironments. Engineered exosomes own powerful intercellular communication, cargoes delivery, penetration and targeted property of desired sites, which endow them with powerful theranostic potential in desmoplastic tumors. Here, we illustrate the significance of CAFs in tumors desmoplastic microenvironments and the theranostic potential of engineered exosomes targeting CAFs mediated desmoplastic microenvironments in next generation personalized nano-drugs development.


Cancer-Associated Fibroblasts , Exosomes , Tumor Microenvironment , Cancer-Associated Fibroblasts/metabolism , Exosomes/metabolism , Tumor Microenvironment/drug effects , Humans , Animals , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Drug Delivery Systems/methods , Extracellular Matrix/metabolism , Antineoplastic Agents/pharmacology
12.
Patient Prefer Adherence ; 18: 879-892, 2024.
Article En | MEDLINE | ID: mdl-38645699

Purpose: To (1) investigate the changes in 5 domains (lack of family support, impact on finance, impact on daily schedule, impact on health, and self-esteem) of family caregiver (FC) burden and overall burden for first diagnosed colorectal cancer; (2) exploring changes in FC burden for colorectal cancer patients over time and analyze the trajectory and sub-trajectories of FC burden; and (3) identify the FC-related and patient-related factors most associated with the overall FC burden and each of its sub-trajectories. Patients and methods: This study is a descriptive longitudinal study. A convenience sampling method was used to recruit patients with colorectal cancer and their primary FCs from seven hospitals. Results: A total of 185 pairs of first diagnosed colorectal cancer patient and their FC were investigated for 4 times. The results reveal the overall burden and 5 domains of burden showed a trend of increasing first and then decreasing, and the burden was the heaviest at the time in the middle of chemotherapy. In the course of time, the aspect that caused the greatest amount of burden on average transitioned from the "effect on daily schedule" (range= 3.3 and 3.9) to the "effect on finances" (range= 3.1 to 3.4). Conclusion: Almost 88% of FCs have a either a moderate or a high level of burden. The quality of life of patients and the self-efficacy, social support and care ability of FCs have a great impact on the overall FC burden and each sub-trajectory.

13.
J Sci Food Agric ; 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38619243

BACKGROUND: Monascus pigment (MP) is a natural food coloring with vital physiological functions but prone to degradation and color fading under light conditions. RESULTS: This study investigated the effect of complex formation of soybean protein isolate (SPI), maltodextrin (MD), and MP on the photostability of MP. Light stability was assessed through retention rate and color difference. Fluorescence spectroscopy (FS), circular dichroism (CD), Fourier-transform infrared (FTIR) spectroscopy, and X-ray diffraction (XRD) explored MP, SPI, and MD interactions, clarifying the MP-SPI-MD complex mechanism on the light stability of MP. Microstructure and differential scanning calorimetry (DSC) analyzed the morphology and thermal properties. The retention rate of MP increased to approximately 80%, and minimal color difference was observed when adding SPI and MD simultaneously. FS revealed hydrophobic interaction between MP and SPI. FTIR analysis showed intensity changes and peak shifts in amide I band and amide II band, which proved the hydrophobic interaction. CD showed a decrease in α-helix content and an increase in ß-sheet content after complex formation, indicating strengthened hydrogen bonding interactions. Scanning electron microscopy (SEM) analysis demonstrated that MP was attached to the surface and interior of complexes. XRD showed MP as crystalline, while SPI and MD were amorphous, complexes exhibited weakened or absent peaks, suggesting MP encapsulation. The results of DSC were consistent with XRD. CONCLUSION: SPI and MD enveloped MP through hydrogen bonding and hydrophobic interaction, ultimately enhancing its light stability and providing insights for pigment-protein-polysaccharide interactions and improving pigment stability in the food industry. © 2024 Society of Chemical Industry.

14.
Curr Pharm Des ; 2024 Apr 19.
Article En | MEDLINE | ID: mdl-38644723

BACKGROUND: Gene therapy has been widely concerned because of its unique therapeutic mechanism. However, due to the lack of safe and effective carries, it has not been widely used in clinical practice. Glypican 3 (GPC3) is a highly specific proteoglycan for hepatocellular carcinoma and is a potential diagnostic and therapeutic target for hepatocellular carcinoma. Herein, to monitor the effect of gene therapy and enhance the transfection efficiency of gene carriers, GPC3-modified lipid polyethyleneimine-modified superparamagnetic nanoparticle (GLPS), a type of visualized carrier for siRNA (small-interfering RNA) targeting the liver, was prepared. METHODS: We performed in vitro gene silencing, cytotoxicity, and agarose gel electrophoresis to identify the optimal GLPS formulation. In vitro MRI and Prussian blue staining verified the liver-targeting function of GLPS. We also analyzed the biocompatibility of GLPS by co-culturing with rabbit red blood cells. Morphological changes were evaluated using HE staining. RESULTS: The GLPS optimal formulation consisted of LPS and siRNA at a mass ratio of 25:1 and LPS and DSPE-PEG-GPC3 at a molar ratio of 2:3. GLPS exhibited evident liver-targeting function. In vitro, we did not observe morphological changes in red blood cells or hemolysis after co-culture. In vivo, routine blood analysis revealed no abnormalities after GLPS injection. Moreover, the tissue morphology of the kidney, spleen, and liver was normal without injury or inflammation. CONCLUSION: GLPS could potentially serve as an effective carrier for liver-targeted MRI monitoring and siRNA delivery.

15.
Front Pharmacol ; 15: 1349199, 2024.
Article En | MEDLINE | ID: mdl-38601464

Background: Osteoporosis is a systemic bone disease characterized by bone loss and microstructural degeneration. Recent preclinical and clinical trials have further demonstrated that the transplantation of mesenchymal stem cells (MSCs) derived from human adipose tissue (AD), dental pulp (DP), placental amniotic membrane (AM), and umbilical cord (UC) tissues can serve as an effective form of cell therapy for osteoporosis. However, MSC-mediated osteoimmunology and the ability of these cells to regulate osteoclast-osteoblast differentiation varies markedly among different types of MSCs. Methods: In this study, we investigated whether transplanted allogeneic MSCs derived from AD, DP, AM, and UC tissues were able to prevent osteoporosis in an ovariectomy (OVX)-induced mouse model of osteoporosis. The homing and immunomodulatory ability of these cells as well as their effects on osteoblastogenesis and the maintenance of bone formation were compared for four types of MSCs to determine the ideal source of MSCs for the cell therapy-based treatment of OVX-induced osteoporosis. The bone formation and bone resorption ability of these four types of MSCs were analyzed using micro-computed tomography analyses and histological staining. In addition, cytokine array-based analyses of serological markers and bioluminescence imaging assays were employed to evaluate cell survival and homing efficiency. Immune regulation was determined by flow cytometer assay to reflect the mechanisms of osteoporosis treatment. Conclusion: These analyses demonstrated that MSCs isolated from different tissues have the capacity to treat osteoporosis when transplanted in vivo. Importantly, DP-MSCs infusion was able to maintain trabecular bone mass more efficiently with corresponding improvements in trabecular bone volume, mineral density, number, and separation. Among the tested MSC types, DP-MSCs were also found to exhibit greater immunoregulatory capabilities, regulating the Th17/Treg and M1/M2 ratios. These data thus suggest that DP-MSCs may represent an effective tool for the treatment of osteoporosis.

17.
Compr Rev Food Sci Food Saf ; 23(3): e13338, 2024 May.
Article En | MEDLINE | ID: mdl-38629461

Mycotoxins, ubiquitous contaminants in food, present a global threat to human health and well-being. Mitigation efforts, such as the implementation of sound agricultural practices, thorough food processing, and the advancement of mycotoxin control technologies, have been instrumental in reducing mycotoxin exposure and associated toxicity. To comprehensively assess mycotoxins and their toxicodynamic implications, the deployment of effective and predictive strategies is imperative. Understanding the manner of action, transformation, and cumulative toxic effects of mycotoxins, moreover, their interactions with food matrices can be gleaned through gene expression and transcriptome analyses at cellular and molecular levels. MicroRNAs (miRNAs) govern the expression of target genes and enzymes that play pivotal roles in physiological, pathological, and toxicological responses, whereas acute phase proteins (APPs) exert regulatory control over the metabolism of therapeutic agents, both endogenously and posttranscriptionally. Consequently, this review aims to consolidate current knowledge concerning the regulatory role of miRNAs in the initiation of toxicological pathways by mycotoxins and explores the potential of APPs as biomarkers following mycotoxin exposure. The findings of this research highlight the potential utility of miRNAs and APPs as indicators for the detection and management of mycotoxins in food through biological processes. These markers offer promising avenues for enhancing the safety and quality of food products.


MicroRNAs , Mycotoxins , Humans , Mycotoxins/analysis , MicroRNAs/genetics , Food Contamination/analysis , Acute-Phase Proteins
18.
PLoS One ; 19(4): e0297695, 2024.
Article En | MEDLINE | ID: mdl-38568917

BACKGROUND: This study aims to study the possible action mechanism of T-cell immunoglobulin and mucin domain 3 (TIM3) on the migratory and invasive abilities of thyroid carcinoma (TC) cells. METHODS: GSE104005 and GSE138198 datasets were downloaded from the GEO database for identifying differentially expressed genes (DEGs). Functional enrichment analysis and protein-protein interaction (PPI) analysis were performed on the common DEGs in GSE104005 and GSE138198 datasets. Subsequently, in order to understand the effect of a common DEG (TIM3) on TC cells, we performed in vitro experiments using FRO cells. The migratory and invasive abilities of FRO cells were detected by wound scratch assay and Transwell assay. Proteins expression levels of the phosphorylated (p)-extracellular signal-regulated kinase (ERK)1/2, matrix metalloproteinase-2 (MMP-2) and MMP-9 were determined via Western blotting after ERK1/2 inhibition in TIM3-NC group and TIM3-mimic group. RESULTS: 316 common DEGs were identified in GSE104005 and GSE138198 datasets. These DEGs were involved in the biological process of ERK1 and ERK2 cascade. TIM3 was significantly up-regulated in TC. In vitro cell experiments showed that TIM3 could promote migration and invasion of TC cells. Moreover, TIM3 may affect the migration, invasive abilities of TC cells by activating the ERK1/2 pathway. CONCLUSION: The above results indicate that TIM3 may affect the migratory and invasive of TC cells by activating the ERK1/2 pathway.


MAP Kinase Signaling System , Thyroid Neoplasms , Humans , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 2/metabolism , Hepatitis A Virus Cellular Receptor 2/metabolism , Cell Line, Tumor , Neoplastic Processes , Thyroid Neoplasms/genetics , Cell Movement/genetics
19.
Radiother Oncol ; 196: 110311, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38670263

OBJECTIVE: We investigated the efficacy of metastatic lesion radiotherapy (MLRT) in patients with metastatic nasopharyngeal carcinoma (mNPC). MATERIALS AND METHODS: Patients with mNPC from three institutions were included in this study. Propensity score matching (PSM) was employed to ensure comparability between patient groups. Overall survival (OS) rates were assessed using the Kaplan-Meier method and compared using the log-rank test. Prognostic factors were identified using univariate and multivariate Cox hazard analyses. Subgroup analyses were conducted to assess the effects of MLRT on specific patient populations. RESULTS: We analyzed data from 1157 patients with mNPC. Patients who received MLRT had significantly better OS than those who did not, both in the original (28 vs. 21 months) and PSM cohorts (26 vs. 23 months). MLRT was identified as an independent favorable predictor of OS in multivariate analyses, with hazard ratios of 0.67. The subgroup analysis results indicated that radiotherapy effectively treated liver, lung, and bone metastatic lesions, particularly in patients with a limited tumor burden. Higher total radiation doses of MLRT (biologically effective dose (BED) ≥ 56 Gy) were associated with improved OS, while neither radiation technique nor dose fractionation independently influenced prognosis. CONCLUSIONS: MLRT offers survival advantages to patients diagnosed with mNPC. Patients with limited metastatic burden derive the most benefit from MLRT, and the recommended regimen for MLRT is a minimum BED of 56 Gy for optimal outcomes.

20.
Int J Mol Sci ; 25(8)2024 Apr 10.
Article En | MEDLINE | ID: mdl-38673792

Arbuscular mycorrhizal fungi symbiosis plays important roles in enhancing plant tolerance to biotic and abiotic stresses. Aquaporins have also been linked to improved drought tolerance in plants and the regulation of water transport. However, the mechanisms that underlie this association remain to be further explored. In this study, we found that arbuscular mycorrhiza fungi symbiosis could induce the gene expression of the aquaporin ZmTIP2;3 in maize roots. Moreover, compared with the wild-type plants, the maize zmtip2;3 mutant also showed a lower total biomass, colonization rate, relative water content, and POD and SOD activities after arbuscular mycorrhiza fungi symbiosis under drought stress. qRT-PCR assays revealed reduced expression levels of stress genes including LEA3, P5CS4, and NECD1 in the maize zmtip2;3 mutant. Taken together, these data suggest that ZmTIP2;3 plays an important role in promoting maize tolerance to drought stress during arbuscular mycorrhiza fungi symbiosis.


Aquaporins , Droughts , Gene Expression Regulation, Plant , Mycorrhizae , Plant Proteins , Symbiosis , Zea mays , Zea mays/microbiology , Zea mays/genetics , Zea mays/metabolism , Mycorrhizae/physiology , Symbiosis/genetics , Aquaporins/metabolism , Aquaporins/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological , Plant Roots/microbiology , Plant Roots/metabolism , Plant Roots/genetics , Drought Resistance
...